If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2-55x+9=0
a = 50; b = -55; c = +9;
Δ = b2-4ac
Δ = -552-4·50·9
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-55)-35}{2*50}=\frac{20}{100} =1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-55)+35}{2*50}=\frac{90}{100} =9/10 $
| 3-4x-3x=11 | | 1/5x-2/3=1/2 | | (v^2+6v-7)/(3v^2-3)=0 | | (3x/5)-x=(x/15)-(35/3) | | 1/4y=11/2 | | 45q=9q+2 | | 3(x+2)=5-7 | | 5/4x+2/5=15 | | 5*g-(5/6)=0 | | 4m+3/8=67/9 | | 12–2(x–4)=4x–10 | | 15+t=7 | | 6y-4=4y+13 | | 7x+13=x-9+7x+4 | | 6y-4=4y+14 | | -3y-(-4)=4y+16 | | 4|x+8|-5=11 | | x-0.35x=13.65 | | 3(x-3)=5x-4+(7-x) | | x=4x^2+16x+4 | | 6x+5=1x+3 | | 13=3x-2-6 | | 1/4x+⅔=1/2x+1 | | 7p+11=-41 | | 150+2v=195-1v | | 2x-6=86 | | 12+3v=0 | | -3x-4=2x-16 | | n÷3=8 | | 13x-3=9x=29 | | 1/4x+2/3=1/2x+1 | | X2-18x*81=0 |